All Saints' Catholic High School Luceat Iux Vestra

Subject: Computer Science GCSE

Year: 10

10	Unit 1-	Unit 1-	Unit 1-	Unit 4 –	Unit 5 –	Unit 6 – Data	Unit 7 -
	Programming part	Programming	Programming	Computer	programming	Representation	Algorithms
	1: Sequence	part 2: Selection	part 3: Iteration	systems	Part 4		
Aim of Unit	Understand the key	Understand the key	Understand the	Understand the	Understand the	Explain how	Define the terms
	programming concept	programming	key programming	role of the CPU.	differences	numbers, text,	'decomposition'
	of sequence.	concept of	concept of	Explain the	between a	images, and	, 'abstraction',
	Therefore, this is a	selection by using	Iteration by using	processes of the	procedure and a	sound are	and 'algorithmic
	unit to establish the	randomisation in	a loop in Python.	fetch-decode-	function.	represented	thinking'. Use
	base of programming.	programs. Work	Perform validation	execute cycle.	Describe the	using binary	trace tables.
	This unit is designed	with arithmetic and	checks on data	Determine the	scope of	digits. Perform	Describe a
	to establish a good	logical	entry. Design	role of main	variables. Use	operations on	linear and
	foundation to	expressions. Use	programs using	memory and	functions and	binary digits.	binary search.
	determine how a	selection and	pseudocode.	secondary	procedures as	Convert	Explain the key
	computer uses 1s &	nested selection in		storage.	part of the	between units of	algorithms for a
	0s to make actions	Python.		Construct truth	structured	measurement.	bubble, merge,
	happen. Therefore,			tables for three	approach to		and insertion
	we need to determine			input logic	programming.		sort.
	the need for			circuits. Write a	Test a program		
	translators. There is			program using	for robustness.		
	the key concept of			assembly	Define the term		
	sequence which leads			language (LMC).	'graphical user		
	to variables, and				interface' (GUI).		
	input. The language				Perform string		

Composite In this unit students using a flowchart and pseudocode.In this unit students demonstrate their studentsIn this unit students(a task that requires several building blocks or components)In this unit students demonstrate their students will develop and refine a complete solution, using sequence that meets the requirements of a substantial problem. They will analyse programming kills to make reasoned judgements about the solutions.In this unit summing solution using selection, that meets the requirements of a substantial problems in computational terms to make reasoned judgements about the solutions.In this unit summing substantial problems in to make reasoned judgements about the requirements of a substantial problems in to make reasoned judgements about that are extremely attractive in the modern workplaceIn this unit meets the meets the reasoned judgements about the solutions.These thinking and programming skills that are extremely attractive in the modern workplaceIn this unit meets the reasoned judgements about the solutions.	and knowledge of how computer systems work. Starting with the building blocks of the microprocessor and logic gates. Students will discover how a computer system works and executes instructions. students from being novices in unit 1,2 & 3 to having the confidence to tackle more advanced programming challenges with the introduction of procedures	The focus is on how data can be represented in many different forms. You can see this happening throughout time, for example, in the use of cave paintings and clay tablets, through to the use of Morse code. Data and instructions in a computer are formed using a series of 1s and 0s. In this unit, students will discover how numbers, letters, images, and sound are represented with	The focus of this unit is on searching and sorting algorithms, though other topics are covered, such as computational thinking, flow charts, and tracing algorithms. Students will have opportunities to analyse, interpret, modify, and implement a range of algorithms.
---	--	---	--

		I				1	
						1s and 0s. They	
						will also learn	
						about the factors	
						that impact on	
						the quality of	
						those	
						representations,	
						such as bit	
						depth. Finally,	
						students will be	
						introduced to	
						the concept of	
						compression and	
						discover how to	
						perform run	
						length encoding	
						and Huffman	
						coding as forms	
						of lossless	
						compression	
Component	Compare how	Define a condition	Define iteration as	Compare	Describe a	Give examples	Define the terms
Knowledge	humans and	as an expression	a group of	embedded and	subroutine	of the use of	decomposition,
8	computers interpret	that can be	instructions that	general-purpose	Describe the	representation.	abstraction, and
(the	instructions.	evaluated to either	are repeatedly	computer	purpose of	Explain that	algorithmic
building	Explain the	True or False.	executed.	systems.	parameters in	computers use	thinking.
blocks that	differences between	Identify flowchart	Modify a program	Describe the role	subroutines	binary to	Recognise
together,	high- and low-level	symbols and	to incorporate a	of system	Use procedures	represent all	scenarios where
when known.	programming	describe how to	while loop. Use a	software as part	that accept	data and	each of these
allow	languages.	use them	trace table to	of a computer	arguments	instructions.	computational
successful	Describe why	(decision)	walkthrough code	system.	through	Explain how	thinking
performance	translators are	Identify that	that uses a while	Explore the role	parameters.	binary relates to	techniques is
of a complex	necessary.	selection uses	loop. Use a trace	of the operating	Describe how	two-state	applied.
task)	List the differences,	conditions to	table to detect and	system and	subroutines are	electrical	Apply
	benefits, and	control the flow of	correct errors in	utility software.	used for	signals. Give	decomposition,
	drawbacks of using a	execution.		Describe the	decomposition.	examples of the	abstraction, and
	aran ouche of using a				accomposition.	enumpies of the	assuration, and

со	ompiler, or an	Walkthrough code	programs. Define	basic	List the	use of	algorithmic
in	nterpreter.	that includes	a 'for' loop.	components of	advantages of	representation.	thinking to help
D	Describe the tools an	selection (if, elif,	Walk through	the CPU.	subroutines.	Explain that	solve a problem.
II	DE provides	else).	code that uses a	Describe the	Explain the	computers use	Describe the
(e	editors, error		'for' loop.	roles and	difference	binary to	difference
di	iagnostics, runtime		Modify a program	purpose of each	between a	represent all	between
er	nvironment,		that uses a 'for'	component of	function and a	data and	algorithms and
tra	ranslators)		loop.	the CPU in	procedure.	instructions.	computer
U	Jse subroutines in		Compare a 'while'	computation.	Use trace tables	Explain how	programs.
pr	rograms.		loop and a for	Explain how the	to investigate	binary relates to	Identify
D	Define a sequence as		loop.	fetch-decode-	functions.	two-state	algorithms that
in	nstructions			execute cycle	Use functions to	electrical	are defined as
pe	erformed in order,			works by	return values in	signals. Perform	written
w	with each executed in			describing what	programs.	binary shifts.	descriptions,
tu	urn.			happens at each	Describe the	Describe	flow charts, and
Pı	redict the outcome			stage.	scope of	situations where	code.
of	f a sequence and			Describe the role	variables.	binary shifts	Analyse and
m	nodify it.			of each part of	Describe how	can be used.	create flow
In	nterpret error			the CPU as part	parameters can	Explain how	charts using the
m	nessages and define			of the fetch-	reduce the need	overflow errors	flow chart
	rror types and			decode-execute	for global	can occur.	symbols. Use a
id	dentify them in			cycle. Describe	variables.	Explain how	trace table to
pr	rograms (logic,			the	Identify when to	underflow	walk through
	yntax). Use			characteristics of	use global	occurs. Explain	code that
	neaningful			RAM and ROM.	variables.	why and where	contains a while
	dentifiers.			Explain the role	Describe a	hexadecimal	loop, a for loop,
	Determine the need			of main memory	constant.	notation is used.	and a list of
	or variables.			as part of a		Explain how	items.
	Distinguish between			computer		numbers are	Use a trace table
	eclaration,			system.		represented	to detect and
	nitialisation, and			Define cache		using	correct errors in
	ssignment of			memory.		hexadecimal	a program.
Va	ariables.			Describe the role		notation.	Identify why
				of cache in a		Convert	computers often
				computer		decimal	need to search

Demonstrate	system. Explain	numbers to and	data. Describe
appropriate use of	why a computer	from	how linear
naming conventions.	system needs	hexadecimal	search is used
	secondary	numbers.	for finding the
	storage.	Explain how	position of an
	State the	ASCII is used	item in a list of
	different types of	to represent	items. Perform a
	secondary	characters, and	linear search to
	storage and	its limitations.	find the position
	describe their	Explain what a	of an item in a
	functional	character set is.	list. Describe
	characteristics.	Describe how	how binary
	State how solid-	character codes	search is used
	state memory	are commonly	for finding the
	works and	grouped and run	position of an
	describe its	in sequence	item in a list of
	characteristics.	within encoding	items.
		tables. Describe	Perform a
		what a pixel is	binary search to
		and how pixels	find the position
		relate to bitmap	of an item in a
		images.	list.
		Describe colour	Identify
		depth and	scenarios when
		resolution.	a binary search
		Define	can and cannot
		'metadata'.	be carried out.
		Calculate the	Identify why
		file size of	computers often
		bitmaps.	need to sort
		Describe how	data.
		the number of	Traverse a list of
		pixels and	items, swapping
		colour depth	the items that
		can affect the	are out of order.

r				
			file size of a	Perform a
			bitmap image,	bubble sort to
			using examples.	order a list
			Calculate file	containing
			size	sample data.
			requirements of	Merge two
			sound files.	ordered lists of
			Describe the	items into a new
			effect of sample	ordered list
			rate, duration,	Describe how
			and sample	merge sort is
			resolution on	used for
			the playback	ordering a list of
			quality and the	items.
			size of a sound	Perform a merge
			file.	sort to order a
			Give examples	list containing
			of metadata	sample data.
			applied to	Insert an item
			sound files.	into an ordered
			Define the	list of items.
			terms 'bit',	Describe how
			'nibble',	insertion sort is
			'kilobyte',	used for
			'megabyte',	ordering a list of
			'gigabyte',	items.
			'terabyte', and	Perform an
			'petabyte'.	insertion sort to
			Compare these	order a list
			terms and	
			convert between	containing
			units of	sample data.
			measurement.	
			Explain what	
			Explain what	

						data compression is. Explain why data may be compressed, and that there are different ways to compress data. Define 'lossy compression' and 'lossless compression'.	
Rationale (why?): Links to prior & future learning	This creates thinking and programming skills that are extremely attractive in the modern workplace. It builds on the programming concepts from KS2 & KS3: sequence, selection and iteration. The langauge is a Text one ie Python (used in KS3). However, they have experience of a visual language i.e. Scratch in KS2. The concepts are the same no not matter	This creates thinking and programming skills that are extremely attractive in the modern workplace. It builds on the programming concepts from KS2 & KS3: sequence, selection and iteration. The langauge is a Text one ie Python (used in KS3). However, they have experience of a visual language i.e. scratch in KS2.	This creates thinking and programming skills that are extremely attractive in the modern workplace. It builds on the programming concepts from KS2 & KS3: sequence, selection and iteration. The langauge is a Text one ie Python (used in KS3). However, they	Builds on the ideas from KS2 & 3 that a computer is input, process and then output. It can be any device if this concept is adhered to. It is the bedrock for A level computing and for a wider grasp of how the technology is pervasive in society today.	This creates thinking and programming skills that are extremely attractive in the modern workplace. It builds on the programming concepts from KS2 & KS3: sequence, selection and iteration. The langauge is a Text one ie Python (used in KS3). However,	Uses calculation skills and number bases from KS2 & KS3. Introduces them to different counting systems and helps develop their appreciation of number work. They will learn to handle extremely large number, like trillions and calculate in them. This is important because	Helps to develop their capability, creativity, and knowledge in computing and apply their analytic, problem- solving, design, and computational thinking skills. This is vital for further study at S35 where problem solving and learning from mistakes is vital for success.

	what language and therefore, the skills are transferable. These skills and concepts extend into KS5 and employment and apprenticeships.	The concepts are the same no not matter what language and therefore, the skills are transferable. These skills and concpets extend into KS5 and employment and apprenticeships.	have experience of a visual language i.e. scratch in KS2. The concepts are the same no matter what language and therefore, the skills are transferable. These skills and concpets extend into KS5 and employment and apprenticeships.		they have experience of a visual language i.e. Scratch in KS2. The concepts are the same no not matter what language and therefore, the skills are transferable. These skills and concepts extend into KS5 and employment and apprenticeships.	everything they do in society is based around these large numbers. For example, downloading data and data usage for mobile phones etc.	
Assessment Task	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.	A series of individual exam questions on each building block of the unit with a final summative assessment to be used at the end of the unit.
Enrichment	Sign up to a python programming course with an industry recognised qualification.	Sign up to a python programming course with an industry	Sign up to a python programming course with an industry	Building a computer from the component parts. They will develop	Sign up to a python programming course with an industry	Visit to Across to see their immersive, interactive video wall.	Use raspberry Pi to control a robot.

recognised	recognised	employable	recognised	
qualification.	qualification.	skills.	qualification.	